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We study the distribution of zeros in a symmetric, two-componen t Widom- 
Rowlinson lattice system (any number of dimensions). We show that for sufficiently 
large mean activity the system partition function cannot vanish if the magnitude of 
the ratio of the two (complex) activities is different from one. 
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1. I N T R O D U C T I O N  

Two-componen t  lattice gases o f  the general type introduced by Widom and 
Rowlinsonr and their con t inuum analog have been o f  considerable interest 
in the study of  phase transitions and cooperat ive phenomena.  ~2-7) For  the 
simplest case o f  two symmetric components  A and B with repulsive hard cores 
between unlike particles and  a smaller (point) hard core between like particles, 
a demixing phase transit ion was proven using the Peierls method on the 
lattice ~2) and a very clever generalization o f  it for the con t inuum case. ~3) These 
were proven for the case where the fugacities of  the two components  are the 
same, ZA = ZB, and large.While it has been presumed that  no phase transition 
is possible for such a system away from the symmetry  line o f  equal 
fugacities for the two components ,  it has only recently been proven for high 
values o f  the fugacities. ~8) 

There are conceptual  similarities between these two-component  lattice 
gases and ferromagnetic  Ising systems. ~2'6) For  the latter we have the well- 
known Lee -Yang  "circle theorem ''(9) that  says that nonanalyt ic  thermo- 
dynamics is possible only ife ~ (where H = fi • magnetic field) is o f  magni tude 
one. Hence for the logar i thm of  the part i t ion function of  the ferromagnetic 
Ising system to be nonanalytic,  it is necessary that  H be pure imaginary;  if it is 
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also (on physical grounds) required to be real, it must be zero. In zero 
magnetic field the Ising spin system has an up~lown symmetry, just as the 
Widom-Rowlinson system is symmetric under the interchange of the two 
components if their fugacities are equal. 

It is natural to wonder if the analogy can be pushed further by proving 
analyticity of the pressure and correlation functions unless zA/z B is 'of 
magnitude one. It also seems natural to approach the question in the Lee- 
Yang manner of locating the complex zeros of the system partition function. It 
is the purpose of this paper to prove such a theorem, at least for the case when 
the mean fugacity (ZAZB)I/2 is sufficiently large. 

Dunlop's result ~8) is closely related to ours, although obtained quite 
differently. If a field H is defined by z~/z~ = e 2 / / ,  Dunlop shows the partition 
function to be nonzero in the portion of the complex H plane defined by Re H 
>~ lira HI, provided also that the mean fugacity is large. Dunlop's lower 
bound for the mean fugacity is smaller by a factor of two than ours, but the 
region of the complex H plane proved analytic is also smaller. 

2. M O D E L S  A N D  T R A N S F O R M A T I O N S  

Let A denote some finite lattice, with sites x0 y,..., in any number of 
dimensions. Our Widom-Rowlinson type lattice model is characterized by 
two (hard-core) conditions: each site can be vacant or occupied by at most one 
particle of either A type or B type, and unlike particles are excluded from 
certain nearby sites around each occupied site. There is no interaction between 
two like particles at different sites and there are no three-body or higher 
interactions. 

Various geometries have been considered for the exclusion "sphere"  for 
unlike particles. The geometry appears to be a more important factor in 
penetrating questions dealing with the nature of the equilibrium states (7) than 
in questions dealing only with the existence of  a phase equilibrium. ~2'3'8~ 
Consistent with this observation, our present analysis--bearing essentially 
only on phase transitions--is insensitive to detailed geometry and requires 
only that we specify the number b of different sites excluded to B (A) particles 
by a particle of type A (B) at some site. Notationally, it is also helpful to refer 
to the collection ~ c A x A o f "  bonds" ; that is, the pair of sites (x, y) e N' if 
an A particle at x excludes a B particle at y (and vice versa). 

It is furthermore helpful to introduce at the very beginning a double-site 
representation of A such that for each x e A we imagine two sites which we 
shall consistently denote x' and x". If A itself is two-dimensional, it is 
convenient to think of two horizontal layers of  sites with x" lying over x'. For 
three (or more) dimensions we may think of  one copy being slightly displaced 
from the other. We will say that the corresponding sites x' and x" are partners. 
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We now imagine that each of the 2[AI sites bears an Ising spin �89 taking 
values of _+ 1 and denoted by o x, or ax,,. We shall define the interactions 
between these Ising spins in such a way that the partition function for the 21AI 
Ising spins will be proportional to the partition function of our Widom- 
Rowlinson (WR) model on the original lattice A. An analysis of the spin 
system for possible singularities (phase transitions) can then be translated into 
a corresponding analysis for the WR model. In particular, zero magnetic field 
for the spin system will translate toequal  chemical potentials for the two types 
of particles, A and B. 

Guided by spin-1 descriptions of  WR models, (2'7) the correspondence is 
fairly obvious: o-~, = ~,, corresponds to the presence of a particle at x, while 
~,, ~ o x ,  means x is vacant: o~, = a~,, = + 1 corresponds to an A particle, 
while a x, = o~,: = - 1 means a B particle. The hard-core interaction between 
A and B particles corresponds to an exclusion of  any configuration for which 
ox,ox,, = + 1 = r and  a~,ay, = - 1 if (x, y) ~ ~. Rather than introduce 
infinitely repulsive four-body interactions to effect this exclusion, we shall 
simply agree that no such configurations will be included in any sum over spin 
configurations. 

We introduce a ferromagnetic interaction - Ja~,a~,, with J > 0 between 
partner spins : large J favors spin configurations ( + ,  + )  and ( - ,  - ) ,  which 
correspond to particles of the two types. In order to distinguish between the 
two types of particles, we need magnetic fields acting on the spins through 
terms - hx , o~ ,  and - h x , , o : .  By permitting all 21A[ magnetic fields to be 
independent variables we are able to use the Asano contraction technique 
described below to study the zeros of  the partition function. 

The partition function of  the spin system is thus 

"~ = Z '  -~ Iq exp(h~,a~, + h~,,o~,, + Jax,ax,,) (1) 
~r x E A  

Here a stands for the 2rAI spin variables {o~,}~A and {o~,,}x~A and the prime on 
the summation sign is to remind us of  the exclusion of spin configurations 
for which any bonded pair of  sites has configuration ( + ,  + )  at one site and 
( - ,  - )  at the other. 

Before relating E~ to the WR partition function we first make a more 
usual connection with a lattice gas (LG) on the double lattice. Here the 
correspondence is o = + means a particle, a = - means a vacancy. To that 
end we write Eq. (1) as 

where 

=s = { e x p [ ( J -  2h-)lAI] } Z ' I - I -~ ,x  + 1)/2 vx,,~x + 1)/2 z ~ ~ x - l ) / z  (2) 
o x 

r~, = exp(2hx,), rx" = exp(2hx,,), Z = exp(2J) 
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and 

h =  (2iAi)- '  ~ (h~, + h,,,) 
x ~ A  

We can thus write 

~" = { e x p [ ( J -  2h)IAI]}-,LG(T, ~" 'Z) ,  ~ s  (3a) 

where 

= ' ~  . . . .  z )  I2' "-'L~t , ~ , --= 1~[ ~x(a:,,, a~,, ; Z) (3b) 
a x 

and where ~ is ~,r~,,, r~,/Z,  rx,,/Z, or 1 according to whether  (a~, ax,,) is 
( + ,  + ) ,  ( + ,  - ) ,  ( - ,  +) ,  or ( - ,  - ) .  It is with EL~ that  the Asano analysis 
o f  zeros will be carried out. 

To obtain the W R  part i t ion function we first rewrite Eq. (1) as 

so that 

where 

= [ e x p ( - J [ A [ ) ]  ~ '  [7[ exp[(hx, + h~,,)(a~, + }~,,)/2] ~ s  

ff 2r 

x exp[(h~, - h~,,)(a,, - a~,,)/2] e x p [ J ( ~ , ~ , ,  + 1)] 

" = e -  j lAk~wRZ a , z  B 

(4) 

(Sa) 

zwR(z~, z.; Ah) = 2 '  IF[ ~x(~x,, o.,,) (Sb) 
~r x 

Here r/~ is z~,x, eahX/2, e-~h'/2,  or zB, , according to whether  (a~,, a~,,) is ( + ,  + ), 
( + ,  - ) ,  ( - ,  +) ,  or ( - ,  - ) .  Also 

zA,~ ~ [exp(hx, + h~,,) exp(2J)] /2  

z,.x --- {exp[--  (h x, + hx,,)] e x p ( 2 J ) } / 2  (5c) 

Ah~ = h~, - h~,, 

F rom Eqs. (3) and (5) we have the relationship between -ZL~ and EWR: 

EWR = [exp(2J  - 2h-)/2]ll'lELa 

In the next section we look for possible zeros o f  ~'LG, which will then be 
interpreted in terms of  zeros of  EwR. The real W R  part i t ion function is 
E(zA, zs) ~ EwR(ZA, Zs; 0), i.e., h~, --~ h~,, for  all x. 
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3. ZEROS OF EL6 

The trick in determining (bounds for) the zeros of a partition function 
begins with describing it as the "Asano contraction "(10) of partition functions 
describing small, finite portions of the lattice. These small systems must jointly 
cover the entire original lattice in the sense that every interaction (including 
the one-body chemical potential terms) must be included in at least one of the 
small systems. 

Here partition function always means one for which each site is 
represented by a different independent fugacity variable as in Eqs. (3b) and 
(5b). While it contains many more variables than the ordinary partition 
function, such a multivariable partition function has one great simplification : 
it is linear in each of the different activity variables. (Of course, the ordinary 
partition function may always be obtained from the multivariable one by 
setting all activities equal to the same common value.) 

Asano contractions deal precisely with such linear functions. Very 
simply, if 

f ( x ,  y)  = axy  + bx + cy + d (6a) 

where x and y are complex variables, and a, b, c, dare  complex constants, then 
the Asano contraction o f f  is 

fAC(z) = az + d (6b) 

(Heuristically, it may help to think of x and y as duplicates of the " t rue"  
variable z; only those terms for which both duplicates are present, or neither is 
present, could be "val id"  descriptions of the " t r u e"  variable.) 

The application to statistical mechanics of lattice systems is usually one 
of "gluing together" a lattice dismembered at some site x. If A z  x, + B and 
Cz~,, + D are the partition functions of the two pieces, the partition function 
of the composite system (with the pieces still treated as independent) is 
ACzx,Zx,, + ADx, + BCzx ,  + BD, but the " t r ue"  partition function of the 
rejoined pieces is the Asano contraction ADz~ + BD. 

The motivation behind this method is the theorem of Asano and 
Ruelle(11) relating the zeros off(x,  y) and those offAC(z). It may be stated: Let 
D~ and Dy be closed regions of the complex plane, not containing 0, with the 
property thatf(x,  y) # 0 as long as x ~ D~ and y ~ Dy. ThenfAC(z) # 0 as long 
as z r D z, where 

Dz = - ( D x  x D,)  = {zlz = - ~ r  I, ~. ~ D~, tl 6 D,} (7) 

The most significant feature of this technique is that for finite-range 
interactions, a finite number of contractions at each site--and consequently a 
finite number of applications of the theorem--suffices to produce a result for 
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an infinite lattice. Notice that if D~ and Dy are each the interior or exterior of 
the unit circle, D z is the same. 

In the above simple illustration the factors A and C include Boltzmann- 
type terms for the various interactions involving a particle at site x. That they 
should be multiplied together in the partition function of the composite 
system follows from the independence of the interactions represented by those 
terms. 

Now, regarding Eq. (3b), we use four-site governing sets--one for each 
bond in ~ - - a s  the small systems that generate the total partition function ELG 
through the Asano contraction procedure. For  a bond (x, y) E ~, the small 
system consists of the four sites x', x", y', and y" and has a partition function 

~ '  ~x~y = [~x,~x,, + z - l ( z x  , + ~x,,) + 1][~S~,, + Z '(z~, + ~f,) + 1] 
~y,,ar,, 

- ~ x , ~ x , ,  - ~ , z ~ , ,  ( 8 )  

An apparent difficulty lies in the fact that the only interaction terms present 
(the Z-1  factors) appear like an interaction between a vacant site and an 
occupied site. These factors would erroneously become Z-2  after multipli- 
cation of the small partition functions and one contraction. 

There is, fortunately, a simple way out of this diffficulty. Suppose the 
lattice A were one-dimensional. There would then be just one contraction 
needed at each site x' or x" and if in the functions in Eq. (8), Zwere replaced by 
Z 1/2, the resulting contracted partition function would be correct. 

There are, it is true, some incorrect terms present at intermediate stages, 
when the contractions have been performed at only one of the partner sites x' 
and x". An example of such an erroneous term is 

(... + zx,~/Z ~/2 + "")(%,,~'Cx; + ...) . . . .  + Zx ,~x ,~r~/Z  ~/2 + ... 

which then becomes % , , ~ , i / Z  1/2 after the contraction at x'. This term is 
eliminated, however, by the contraction at x"--since it contains z~ but 
not ~x'~' �9 

The generalization to higher dimensions is (for this technique !) tr ivial--  
we must simply replace Z 1/2 by Z l/b, where b is number of sites excluded to a B 
(A) particle by an A (B) particle, in addition to the site on which the reference 
particle sits. Thus b is one greater than the number of contractions needed at 
each site to reconnect the (double-site) lattice after initially splitting it into 
four-site covering sets. For  the square lattice with nearest neighbor exclusions 
between unlike particles, b = 4. In three diniensions suppose an A particle 
excludes a B particle from all 27 sites of the 3 + 3 cube with A at its central site. 
Then b = 26. This is the model known to have non-translation-invariant 
equilibrium states associated with a "sharp interface" between the phases. ~7) 
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We now must analyze the zeros of the "smal l"  partition function of Eq. 
(8), with Z replaced by Z 1lb. Changing notation slightly, we actually study 

Fw(x, ~., y, q) = [Wxr + �89 + ~) + W][Wyq + �89 + q) + W] 

- W 2 x ~ -  W2y~l (9) 

where 2 W = Z lib and ~x, has been replaced by x, etc. For this analysis we need 
the theorem of Grace(12): 

Letf(x,  y) = f (y ,  x) = axy + bx + by + c, where a, b, and c are complex 
constants, and let g(x) = f (x ,  x). If  the zeros of g are contained in a closed 
circular region C of the complex plane, thenf(x,  y) =~ 0 i fx  q} C and y r C. We 
remark that it is crucial that f be first order in both x and y and that f be 
symmetric in x and y. The theorem can be generalized to an arbitrary (finite) 
number of variables, for first-order functions totally symmetric in all 
variables. 

While Fw(x, ~, y, q) is not invariant to all permutations of its arguments, 
it is covered by the following corollary of Grace's theorem. 

Corollary. Let F(x, 4, y, ~1) be first order in each of the four complex 
variables and satisfy F(x, ~, y, ~) = F(x, ~, r/, y) = F(~, x, y, r/). Let 

G(x, y) = F(x,  x, y, y) 

and suppose that G(x, y) # 0 if x 6 Cx and y 6 Cy, where Cx and Cy are closed 
circular regions of the plane; then F(x, ~, y, q) =~ 0 if x 6 C~, ~ ~ Cx, y q~ Cy, 
and r/q} Cy. 

Proof. :Two applications of Grace's theorem are required. F(x, ~, y, y) 
r 0 if x 6 Cx, ~ ~ Cx (for fixed y 6 Cy) since F(x, ~, y, y) is symmetric in x and 
~. But F ( x , ~ , y , y ) # O  if y r  fixed x r  {r 
F(x, ~, y, q) # 0 if y r  Cy, q 6 Cy (along with x 6 C x, ~ r Cx) since F is 
symmetric in y and r/. This concludes the proof. 

To apply this corollary to Fw defined in Eq. (9), we must produce circular 
regions C~ and Cy. Actually, we are able to do this only if Wis sufficiently large 
(W > 1 + 2-1/2) and then we may take the unit circle for both C x and Cy. The 
crucial step is the following. 

Proposition. If Gw(x,y) = F w ( x , x , y , y  ) and W~> 1 + 2 -l/z, then 
Gw(x, y) = 0 and lYl = 1 imply that Ixl = 1. 

Proof. We simply solve G~(x, y) = 0 for x in terms of y using the 
quadratic formula, to obtain 

- - ( W y  2 + y + W) + i[4W2(Wy 2 + y)(y + W) - (Wy 2 + y + W)2] I/z 
x = 2(Wy 2 + y) W 

(10) 
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We then calculate x/y making  use several t imes of  the fact that  y ~ = y* 
( =  complete  conjugate)  since lyl = 1. We obtain  

x - ( W y  + 1 + Wy*) + i(4W2IW+ yl 2 - IWy + 1 + I/Vy*t2) I/2 

y 2W(Wy 2 + y) 

In the n u m e r a t o r  Wy + 1 + Wy* is real, as is the square root,  provided 

4W21W + yl 2 >t IWy + 1 + Wy*l 2 

for all lYl = 1. It  may  be verified that  this is true if W ~> 1 + 2-1/2. Finally, 

y 2  = 4W2[W_}_ y12 _ i W + y l 2  _ 1 

4W2IWy z + yl z [W § y*l 2 

which completes  the p r o o f  of  the proposi t ion  since Wis  real. Clearly G,, = 0 
and Ixl = 1 also imply lYl = 1 for W >  1 + 2 -1/2. 

We can now demons t ra te  a l emma  abou t  the zeros of  F w. 

k e m m a .  Let Fw(x, { ,y ,  ~1) be as defined in Eq. (9) and let W/> 1 
+ 2-1/2;  also let Ce (el) be the closed exterior (interior) of  the unit  circle. I f  
q q~ C e is true for q equaling each of  the four  variables x, {, y, and r/, then 
Fw(x, ~, y, ~) ~ O, Also, if q r  for all four  variables,  F~ r 0. 

Proof. Again let Gw(x, y) = Fw(x, x, y, y) and notice that  G~(x, y) = 0 
and y = 0 imply that  Ixl > 1 for  W ~> 1 + 2-1/2 for either branch  of  Eq. (10). 
Actually,  one branch  approaches  infinity as y --+ 0 and the other  approaches  
- W. Either branch  is a cont inuous  function o f y  that  has modulus  one when 
lYl = 1 (by the above proposi t ion)  and only when lYl = 1 (by the symmet ry  of  
Gw with respect to interchanging x and y). We thus conclude that  the mapp ing  
(10) carries C i into C e (inside of  unit  circle to outside). To  obtain the 
cor responding  result for  Ce, we notice that  

x2y2Gw(1/x, 1/y) = G,,(x, y) 

which t ransforms  the small-y results into large-y results; Eq. (10) therefore 
maps  the exterior o f  the unit circle C~ into Ci. We can thus conclude that  if x 
and y are bo th  strictly inside or strictly outside the unit  circle, Gw cannot  
vanish. The  corol lary  to Grace ' s  theorem applies to Fw of  Eq. (9), which 
concludes the p r o o f  of  the lemma.  

The principal  result o f  this paper  is the following theorem.  

T h e o r e m .  The lattice gas part i t ion funct ion ELa(*', ~"; Z) ,  for Z ~> (2 
+ 21/2) b, does not  vanish if %, < 1 and  vx" < 1 for  all x e A. It  also does not  
vanish if %, > 1 and r~,, > 1 for all x ~ A with Z in the same range. 

Proof, ELG is the Asano  cont rac t ion  of  bA/2 small par t i t ion functions of  
the fo rm (8) with Z replaced by Z lib = 2W. There are b - 1 contract ions  at 
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each site of  the (double-site) lattice, so Eq. (7) must be invoked b - I times. 
But each of  the closed regions is always the same-- the  closed exterior (or 
interior) of  the unit circle--so the regions neither grow nor shrink at each 
contraction. As long as the lemma holds, i.e., if W >~ 1 + 2-1/2, then the 
conclusion will be that all fugacities r~, and Vx,, strictly greater than 1 (or 
alternatively all strictly less than 1) in magnitude will ensure that ELG • 0. 

Consequently, if the fugacities are all the same, say z, and the partition 
function vanishes, it must be true that Fzl = 1. I f  it is further specified that z is 
real, then the only possibility, for EL~ to vanish, is that ~ = 1. 

4. C O N C L U S I O N S  A N D  D I S C U S S I O N  

For all lattice gas fugacities T x, and zx,, to be of  unit modulus, all fields h~, 
and h~,, must be pure imaginary Esee Eq. (2)]. But this means, for the 
isomorphic WR system [see Eq. (5c)], that z A and z8 must be equal in 
magnitude. Alternatively, the ratio 

ZA,x/Zs,~ = exp(2h~, + 2h~,,) = rx,Zx,, 

obeys a "circle theorem" in the sense that this ratio must be of  unit 
magnitude; and, of  course, if the fields are real, they must vanish so that the 
two fugacities are strictly equal. The preceding statements have been here 
proven under the condition that the parameter  Z = e 2J  be real and equal to or 
greater than (2 + 2~/2) b. In the WR representation Z is related to the mean 
fugacity by 

Z = 2(ZA,~ZB,~) ~/2 

from Eq. (5c). 
The significance, as usual, of  statements regarding the zeros of the 

partition function is the assurance of analytic thermodynamic proper t ies- -  
derivable from the logarithm of the partition function--inside open regions 
free of  zeros. I f  the fugacities of  the two types of  WR particles are each real, 
then they must be equal for a phase separation to be possible. We have proved 
this only in the high-mean-fugacity region, Z >/(2 + 2~/2) b, although we 
believe it to be true for all real activities. 

While there are no calculations or good estimates of  the transition 
fugacities z, = zA = zB for real lattices in two or more dimensions, they surely 
lie below the value (2 + 21/2)b/2 calculated here for the validity of  the "circle 
theorem." It is to be presumed that some other locus of  zeros besides the unit 
circle (in the z plane) is correct for lower mean fugacities, but that locus most 
likely still intersects the positive real axis only at z = 1. Dunlop's  work ~8) 
verifies this statement down to mean fugacity (2 + 21/2)~/4. 
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Some evidence bear ing  on these quest ions  is suppl ied  by  the one- 
d imens iona l  lat t ice with nearest  ne ighbor  exclusions between unlike par-  
ticles. ~13) This model ,  o f  course,  has no phase  t rans i t ion  (no zeros on the 
posit ive real axis). The par t i t ion  funct ion does have complex  zeros, however,  
which may  be s tudied analyt ical ly .  U n d e r  the s impl i fying assumpt ions  o f  (1) 
periodiC b o u n d a r y  condi t ions  and  (2) zAz ~ = Z 2 / 4  is real,  the par t i t ion  
funct ion and its zeros were s tudied as funct ions  o f  the complex  var iable  z j z s  

= ~2. There  are, for  low values o f  z~z s, zeros o f  the pa r t i t i on  funct ion for  
values o f  IzA/zsl different  f rom one. However ,  for (ZAZB) 1/2 ~ 33/2 = 5.196..., 

the only pa r t i t ion  funct ion zeros co r r e spond  to IZA[ = [Zs]. This is consis tent  
with the conclus ion  of  this paper ,  tha t  ]zAI mus t  equal  Izst for the par t i t ion  
funct ion to vanish  if  (ZAZB)I/2>~ (2 + 21/2)2/2 = 5.828 .... In the one-  

d imens iona l  case (b = 2), at least,  the b o u n d  ob ta ined  by  the present  me thod  
appears  to be a qui te  good  one. 
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